moon_aka_sun: (guess2)
[personal profile] moon_aka_sun

g =: -:>:%:5           NB. (1+√5)/2

g -: <:*:g             NB. g == g²-1
g -: >:%g              NB. g == 1+1/g

g -: (>:@%)^:_ (1)     NB. 1+1/(1+1/(1+1/…)) [Fig.1]
g -: (%:@>:)^:_ (1)    NB. √(1+√(1+√(1+…)))

g -: 4%~(%:4)+%:(!4)-4 NB. g out of 4 4s
g -: (%~%:+[:%:!-]) 4  NB. the same

g -: +/%g^>:i.66       NB. g == 1/g¹ + 1/g² + 1/g³ + …  [1] [Fig.2]
1 -: +/%g^>:+:i.33     NB. 1 == 1/g¹ + 1/g³ + 1/g⁵ + …  [2]

1 -~ (1+%&g)^:_(1)     NB. [1]
(1+%&(*:g))^:_(1)      NB. g == 1/g⁰ + 1/g² + 1/g⁴ + …
g %~ (1+%&(*:g))^:_(1) NB. [2]

NB. but ^:_ uses = with default delta > 1e_13 which is not enough for -: later
g -: 1 -~ (1+%&g)^:66(1)      NB. [1]
1 -: g %~ (1+%&(*:g))^:33(1)  NB. [2]

G =: -:(10^101x)+(<.&%:)5*10^202x
(100&{.@":)"0 G,*:G
NB. 1618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137(48)
NB. 2618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204189391137(469...)

Fig.1:

phi as infinite continued fraction

Fig.2:

phi seqries

Oффтопик бонус для заглянувших :)

From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.

December 2016

S M T W T F S
    123
4 5678910
11121314151617
18192021222324
25262728293031

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 26th, 2017 12:33 am
Powered by Dreamwidth Studios